3 research outputs found

    Resource allocation in disaggregated optical networks

    Get PDF
    The recently introduced disaggregation model is gaining interest due to its benefits when compared with traditional models.In essence, it consists on the separation of traditional hardware appliances (e.g. servers, network nodes) into commodity components, which then are mounted independently for their exploitation into customized physical infrastructures. Such an approach allows telecommunication operators and service providers to appropriately size their infrastructure and grow as needed. One of the main key benefits of the disaggregation model is the break of the vendor lock-in, pushing towards interoperability between equipment from different vendor with minimum standardization of software and hardware specifications, allowing operators to build the best solutions for their needs. Moreover, efficient scaling is also an important benefit introduced by the disaggregation approach. Due to these benefits, among others, the disaggregation model is gaining momentum and is being adopted into multiple fields and domains of nowadays telecom infrastructures. In this regard, the scenario under study of this master thesis focuses on disaggregated optical transport networks. Disaggregation allows for more open and customized optical networks, reducing both capital and operational expenditures for infrastructure owners.However, despite of these positive aspects, disaggregated optical networks face several challenges, beingthe degradation of the network performance when compared to traditional integrated solutions the most important one. In this regard, this thesis investigates the impact of disaggregation in optical networks and investigates regeneration as a potential solution to compensate the performances’ degradation. Under this premise, optimal solutions for regenerator placement, exploiting the inherent grooming capabilities of regenerators, are proposed and evaluatedIncomin

    Resource allocation in disaggregated optical networks

    No full text
    The recently introduced disaggregation model is gaining interest due to its benefits when compared with traditional models.In essence, it consists on the separation of traditional hardware appliances (e.g. servers, network nodes) into commodity components, which then are mounted independently for their exploitation into customized physical infrastructures. Such an approach allows telecommunication operators and service providers to appropriately size their infrastructure and grow as needed. One of the main key benefits of the disaggregation model is the break of the vendor lock-in, pushing towards interoperability between equipment from different vendor with minimum standardization of software and hardware specifications, allowing operators to build the best solutions for their needs. Moreover, efficient scaling is also an important benefit introduced by the disaggregation approach. Due to these benefits, among others, the disaggregation model is gaining momentum and is being adopted into multiple fields and domains of nowadays telecom infrastructures. In this regard, the scenario under study of this master thesis focuses on disaggregated optical transport networks. Disaggregation allows for more open and customized optical networks, reducing both capital and operational expenditures for infrastructure owners.However, despite of these positive aspects, disaggregated optical networks face several challenges, beingthe degradation of the network performance when compared to traditional integrated solutions the most important one. In this regard, this thesis investigates the impact of disaggregation in optical networks and investigates regeneration as a potential solution to compensate the performances’ degradation. Under this premise, optimal solutions for regenerator placement, exploiting the inherent grooming capabilities of regenerators, are proposed and evaluatedIncomin

    Resource allocation in disaggregated optical networks

    No full text
    The recently introduced disaggregation model is gaining interest due to its benefits when compared with traditional models.In essence, it consists on the separation of traditional hardware appliances (e.g. servers, network nodes) into commodity components, which then are mounted independently for their exploitation into customized physical infrastructures. Such an approach allows telecommunication operators and service providers to appropriately size their infrastructure and grow as needed. One of the main key benefits of the disaggregation model is the break of the vendor lock-in, pushing towards interoperability between equipment from different vendor with minimum standardization of software and hardware specifications, allowing operators to build the best solutions for their needs. Moreover, efficient scaling is also an important benefit introduced by the disaggregation approach. Due to these benefits, among others, the disaggregation model is gaining momentum and is being adopted into multiple fields and domains of nowadays telecom infrastructures. In this regard, the scenario under study of this master thesis focuses on disaggregated optical transport networks. Disaggregation allows for more open and customized optical networks, reducing both capital and operational expenditures for infrastructure owners.However, despite of these positive aspects, disaggregated optical networks face several challenges, beingthe degradation of the network performance when compared to traditional integrated solutions the most important one. In this regard, this thesis investigates the impact of disaggregation in optical networks and investigates regeneration as a potential solution to compensate the performances’ degradation. Under this premise, optimal solutions for regenerator placement, exploiting the inherent grooming capabilities of regenerators, are proposed and evaluatedIncomin
    corecore